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Abstract--A new flooding mechanism is explored for porous tube feed systems based on the concept that 
flow reversal takes place inside the liquid film at the feed location. The model is developed, assuming that 
the flow field in the liquid film at any axial position can be represented by the time-average film thickness 
existing there. Thus, it makes the radical assumption that the interfacial waves exert their influence only 
by modifying the shear stress in the gas flowing over the film. A 2-D numerical simulation was constructed 
which solved for both the flow field inside the film and the shape of the free interface. The numerical results 
show that this film mechanism is a viable approach for modeling flooding, as reasonable values of the 
interfacial shear stress from the upward gas flow can reproduce the experimentally measured film 
thickness. This work also suggests that the pressure gradient developed inside the entry is only partially 
due to interfacial shear. Gas-phase accelerations, due to the wave motion, contribute the remainder of 
the measured pressure gradient. 
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I N T R O D U C T I O N  

Flooding in falling-film systems has been the subject of  numerous theoretical and experimental 
studies for over 50 years. During this time, a large number of  empirical correlations as well as 
mechanistically-based models have been formulated to predict the onset of flooding, where liquid 
first begins to flow upward. These have been reviewed recently by Bankoff & Lee (1986). When 
these approaches are compared to data, however, none of  them are able to predict flooding over 
a significant range of  flow conditions, fluid properties, tube size, length or entry configurations. 
This is because the mechanisms on which these models are based are still poorly understood. 
In part I (Lacy & Dukler 1994, this issue, pp. 219-233) new data were presented for a flow loop 
in which the feed was introduced through a porous tube located partway up the column. These 
data were used to evaluate previously suggested mechanisms. In particular, no evidence was found 
to support mechanisms based on waves causing flooding. That is, the growth of waves sufficient 
to block the tube or the propagation of  waves along the film in the upward direction past the feed 
location did not take place. Instead, the data suggest that, at flooding, a change occurs within the 
film formed at the liquid entry, such that the liquid flows upward in the film at the top of  the feed 
zone and down at the bottom. To test this possiblity, this paper presents a film model which 
describes how the liquid can split between the upflow and downflow at the feed location. It will 
be shown that the model gives a realistic mechanism for flooding and is limited, at present, only 
by the ability to estimate the interfacial shear stress applied to the film by the gas flow. The concept 
that flooding takes place at the feed location was suggested by Zabaras & Dukler (1988), who 
showed that the behaviors above and below the feed were uncoupled for sinter feed systems. This 
conclusion was confirmed in experiments by Govan et al. (1991). 

N U M E R I C A L  T E C H N I Q U E  

Overview 

In the film model to be tested, the steady-state flow equations will be solved numerically for 
laminar film flow across the entry region, where liquid is injected through the wall. In this approach, 
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the rather radical assumption is made that the flow field of the liquid film, for each axial location 
in the feed zone, can be represented by the time-average of the film thickness. The waves that always 
exist on the liquid film are assumed to make their influence felt only by modifying certain flow 
characteristics of the gas phase, such as the shear stress at the interface and accelerations. Perhaps 
surprisingly, it will be shown that such an extreme premise leads to acceptable agreement between 
the model and the experiment. The modeling task is complicated by the fact that the actual shape 
of the free interface is unknown and must be computed as part of the overall solution. 

Figure 1 shows a sketch of the liquid feed region used in the numerical simulations. The liquid 
enters the tube, joins the film through the center third of the wall and leaves through the top and 
bottom planes. The feed rate through the porous wall is specified. At the free interface the upward 
gas flow produces an interfacial shear stress, zi, acting on the film. The mean film thickness is known 
at 8 positions along the interface, as shown in figure 1-7 (part I--figure 7). Each of these are 
represented by an x in figure 1. In addition, the average pressure gradient across the injection 
region has been measured. Given the feed rate, fluid properties and measured pressure drop, the 
objective is to compute the shape and location of the interface and the split of the liquid between 
the upflow and downflow for a specified interfacial shear stress distribution. The condition for 
which the upflow first becomes nonzero is the flooding condition. The problem is compounded by 
the need to search for the location of a free interface. Furthermore, the interfacial shear cannot 
be calculated directly from the pressure gradient in the presence of a wavy surface, since part of 
this pressure drop is attributable to form drag. For this reason, and for computational convenience, 
the approach to the problem is inverted. In this study the split between the upflow and downflow 
is specified to match the experimental data at flooding ( < 10% upflow). Then a shear stress profile 
is assumed, from which the shape of the domain and the flow field are computed by iteration until 
the normal pressure condition is satisfied at all interfacial locations in the feed zone. This process 
is repeated for various stress profiles until a film thickness profile is computed which is in optimal 
agreement with the measured one. The resulting stress profile is then examined for its physical 
reality. 

Solving the hydrodynamic problem in the domain shown in figure 1 would involve discretizing 
the Navier-Stokes equations on a 2-D domain where the free interface changes during the 
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Figure 2. Mapping of the physical problem onto a square grid. 

simulation. This change in the domain shape also alters the position of the numerical grid points 
on which the hydrodynamic problem must be solved. A nonchanging grid for discretizing the flow 
equations is preferred. A method to accomplish this task is to orthogonally map the physical 
domain (x,y) onto a unit square (~,t/), as shown in figure 2. In this case the equations are 
discretized on a nonchanging square grid instead of the of the (x, y) domain. To implement this 
approach, the governing equations must be formulated in the (~, r/) domain, and a method must 
be chosen for the mapping. 

Navier-Stokes Equations 
To develop the required form of the Navier-Stokes equations, first consider the relationships 

between the orthogonal coordinate systems (x, y) and (~, r/). The differential length, ds, is given by 

ds 2 = dx 2 + dy 2 = h~ d~ 2 + h2~ dr/2, [1] 

where he and h, are the "scale factors" relating the difference in length scales between the two 
domains. They are defined as 

The continuity equation and the Navier-Stokes equations can now be expressed in terms of these 
scale factors for 2-D steady laminar flow. Since the average film thickness is only a few percent 
of the tube radius, the flow field will be considered planar instead of axisymmetric. The continuity 
equation can now be defined as 

V. (pV) = ~ (h, pu) + -~ (h~pv) =- O, [3] 

where p is the fluid density, V is the velocity vector and u and v are the velocities in the ~ and ~ 
directions, respectively. The equation for steady-state flow is given by 

V . (pVV + P I -  z) = B, [4] 
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where P is the pressure, I is the unit tensor, z is the viscous shear stress and B is the body force. 
The resulting equations in terms of the rate of strain, *ij, can be expressed as 

O (h~pu2) + ~ Oh¢ Oh, O-~ O~I (hepuv) + puv~q -- PV2-ff~ = heh~Be 

- h , - ~  +-~ (2#h.Qe) +-~-~ltq (2~heE~,) + 2p Q. -E~ [5] 

and 

O O 2 Oh¢ O~ (h, puv) + -~q (h¢pv 2) + puv OO~ = hch, B, - -  - p u  -~q  

h o o ( oh, Oh,) 
- e~-~r / + ~-~ (2#h,Q,) + ~ (2/ahcE,,) + 2/~ Q, ~ -  -- Q¢ Oq J [61 

for the ~ and r/ directions, respectively, where /~ is the fluid viscosity. The components of the 
rate-of-strain tensor and the complete Navier-Stokes equations in terms of u and v are given in 
the appendix. The boundary conditions at the wall, ¢ --0, are 

u (0, r/) = known and v (0, q) = 0, [7] 

which corresponds to the velocity normal to the porous and impervious walls being specified and 
to the no-slip boundary condition. At the top and bottom of the domain, r /=  0 or 1, the boundary 
conditions are given by 

Ov(¢,o) Or(C, l) 
u(~, 0) = u(~, 1) = 0 and . . . .  0, [8] 

0q On 

which assumes that the flow field approaches 1-D nonaccelerating flow having a constant film 
thickness at the top and bottom of the domain. For the free interface, ¢ = 1, the tangential and 
normal stresses can be expressed by 

.0 0) 
r,=hek0~ h, O~ ] [9] 

and 

a 0h~ [10] 
PL -- 2#Q¢ = PG + he h---~ ~--~-' 

where a is the surface tension and the subscripts L and G refer to the liquid and gas side of the 
interface, respectively. 

The flow field is computed by solving [5] and [6] on the unit square. For this purpose a computer 
code was constructed based on the Teach-T code of Gosman & Ideriah (1976). This is a control- 
volume formulation on a staggered-grid system which uses the SIMPLIER pressure/continuity 
procedure as described by Patankar (1980). To properly handle the convective terms in [5] and [6], 
Huang et al. (1985) studied different discretization schemes as better alternatives to the widely used 
upwind differencing scheme and found the QUICK scheme of Leonard (1979) to be the most 
satisfactory. To overcome stability problems inherent in the original QUICK formulation, this 
study incorporates an improved version developed by Pollard & Siu (1982) known as QUICKER 
(extended and revised). 

Mapping Technique 
The "strong constraint" method developed by Ryskin & Leal (1983) was used to compute the 

scale factors for the mapping and to converge on the correct interfacial shape. In this method two 
Laplace equations, given by 

0¢]+N o,TJ 
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and 
or 0 

3-~ ( f ~ )  + ~-~ ( f  ~ )  = O, [12] 

must be solved for the x and y directions. The functionf(~, q), known descriptively as the distortion 
function, controls the positioning of the grid points in the (x, y) plane and is defined simply as 

h~ [13] 
f(~, '1) - he. 

One starts with a simple shape in the physical domain that is geometrically similar to what the 
actual shape of the domain should be, so that the initial values for the scale factors, and therefore f, 
are known. For the entry region, a rectangle was chosen as the initial shape. The initial value o f f  
was thus the ratio of the adjacent side-lengths, which corresponds to a rectangular grid in the (x, y) 
plane. 

To obtain the mapping, [11] and [12] were each solved on separate unit squares as shown in 
figure 3. The boundary conditions must satisfy orthogonality constraints, which were given by 
Ryskin & Leal (1983) as 

fox Oy Ox _ f ~  [141 0~-Oq and 0--~= . 

For three of the four sides, either x(~, t/) or y(~, t/) is a constant. As its derivative along that same 
side is therefore zero, [141 shows that the derivative of the other x(~, r/) or y(~, ~/) variable in the 
direciton normal to that side is also zero, hence the boundary conditions shown in figure 3. This 
is not the case, however, for the free interface located at ~ = 1. In fact, it is through the specifying 
of this boundary condition at ~ = 1 that the free interface is actually changed during the solution 
process. As this change cannot be done a priori and still maintain an orthogonal grid, Ryskin & 
Leal (1983) proposed that the scale factor h¢(~, 7) at ~ = 1 be changed. The reasoning behind this 
approach is the following. As the normal to the free surface is also the normal to the ~ = 1 
boundary, a point on this boundary at t /=  qi, for example, can be moved inward or outward along 
the ~ coordinate by simply decreasing or increasing he(l, r/) for each t /=  t/i along the interface 
(~ = 1). When the values of he(l, t/i) are thus changed, new values of x(~, r/), y(~, q) and the scale 
factors can be determined throughout the domain. 

For the initial rectangular geometry, the scale factors are equal at all locations in the domain. 
At the end of n - 1 iterations in order to update the domain shape, the value of he(l, r/) for any 
r /=  qi is set equal to its value at the (n - 1)th iteration plus a small change, 6"-'(qi). This gives 

h~(l ,  rh) = h~- ' (1,  rh) + 6"-l(?/i), [151 

where 6" - l ( th )  is computed using the imbalance in the normal pressure at the interface evaluated 
from the last solution of the equations of motion. The method developed for computing 6"- l(th) 
appears in the appendix as [A15]. 

The solution procedure for solving both the hydrodynamic problem and converging on the 
interracial shape is as follows: 

~-.,J'dq=O y=L 
0,I I,I 0,I I,I 

x=O 
x 

Domain  = 7 ay/~= o Y 
Domain 

1 ,o o,o 1 ,o o,o ~ =o y=O 

Figure 3. Boundary conditions to compute the mapping. 

ay/-o~= ? 
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(1) Select the initial rectangular shape and number of grid points, thus specifyingf 
and he(l, q). 

(2) Solve [5] and [6] subject to the boundary conditions [7]-[9]. 
(3) Calculate the normal pressure imbalance using [10]. 
(4) Calculate 6 from [A IS]. 
(5) Update the value of he(l, q) in [15]. 
(6) Solve [i 1] and [12] using the updated value of he(l, r/) to obtain a new mapping 

and the new shape of the domain in the (x, y) plane. 
(7) Repeat steps 2-5 until convergence. 

To decrease the required computing time, the equations in steps 2 and 6 are solved using a weak 
convergence criteria for each iteration, since an accurate solution is not necessary at the inter- 
mediate steps. For a 30 x 30 grid for u, v and P, the numerical simulation requires 5-30 min on a 
CRAY-YMP. This includes the computer time needed to carry out the mapping on a 59 x 59 grid. 

Interfacial Shear Stress and Pressure Gradient Profiles 

To complete the specification of the problem, the axial profile of the interfacial shear stress and 
the pressure gradient must be approximated across the feed zone. These values are estimated at 
the top and bottom outlets (see figure 1) by assuming that the liquid is in parallel flow, as indicated 
by the near-constant values of the mean film thickness at those two locations. The 1-D 
Navier-Stokes equation for an incompressible fluid is given by 

dP c~2V 
0 - dy Pg + # c3x 2 , [ 16] 

with boundary conditions 

at x = 0  

and 

V = 0  [17a] 

~V z~ 
- -  , [17b] at x = h t ~ x  / z  

where g is the gravitational acceleration. Solving [16] for V and integrating the resulting velocity 
profile over the film thickness, h, yields 

dP 3Z  i 3t~F d 
d ~ = - P g  + ~  + h ~ '  [18] 

where Fd is the volumetric rate at which liquid flows downward per unit perimeter. Given the values 
of h and F~ from the experimental data, zi can be determined from a force balance over the gas 
core. For gas flow in the absence of accelerations, as would exist for flow over a smooth film, this 
balance yields 

(D -- 2h) dP 
z~ = 4 d y '  [19] 

where D is the pipe diameter. As the pressure gradient is the same in both phases for 1-D flow, 
[18] and [19] can be combined to give 

= 2 / D - 2h \ /  3#Fa) [20] 

for locations below the feed, and 

z, = 2( D -- 2h "~{ h + 3~ru~ [21] 
g h2 J' 

for locations above the feed; where Fu is the volumetric rate of liquid flowing upward per unit 
perimeter. For a given split of the injected liquid between the upflow and downflow, Fd and F, 
are known along with the film thickness. Thus, ~i can be calculated at the bottom and top outlets 
from [20] and [21], with the pressure gradients determined from [19]. 
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Figure 4. Profiles for the interfacial shear stress and the pressure gradient. 
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Measurements of the pressure gradients below the porous feed section between probes 1 and 3 
(see figure 1) are in approximate agreement with the gradients computed from [19] and [20]. Since 
these equations were developed for a wave-free interface, one would expect the wave action to be 
suppressed at the bottom outlet. This is in agreement with the measured wave trace from probe 1 
in figure 1-6, which shows that highly-damped wave motion exists there. However, the pressure 
gradient (and presumably the interfacial shear) measured across the feed is much higher than 
is measured either above or below the feed. Based on these observations, and in the absence of  
additional information, a linear pressure gradient and shear stress distributions across the porous 
section are assumed, as shown in figure 4. For the pressure gradient, the measured mean value 
specifies the slope. Past the maximum the local gradient probably decays gradually as indicated 
by the dashed line. For computational ease the step change is used. Numerical computations show 
a negligible difference in the computed film thickness profile from the two pressure gradient profiles. 

Shear stress profiles were established by selecting a mean stress and allowing it to vary linearly, 
as shown in figure 4(b). Then, the average shear stress, za~, between the two pressure tap locations 
can be compared with the stress calculated from the measured pressure gradient across the same 
axial length, z*, assuming no accelerations in the gas phase. In addition to interfacial shear, the 
pressure gradient results from these gas-phase accelerations due to flow around the large interfacial 
waves and to acceleration of  the entrained drops (Lopes & Dukler 1986). Thus, z,v/z* would be 
expected to be < 1.0. 

S I M U L A T I O N  RESULTS 

Numerical simulations of  the entry region were performed for three liquid feed rates correspond- 
ing to flooding data collected in part I for a 50.8 mm i.d. vertical tube. For each feed rate, the split 
of  the liquid between the upflow and downflow was measured in addition to the film thickness and 
the pressure gradient across the feed. These data corresponded to the lowest gas rate in which a 
well-developed cocurrent gas-liquid flow existed above the liquid entry region. Table 1 lists these 

IJMF 2 0 ' 2 ~ "  
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Table 1 

Liquid feed rate, Liquid upflow Gas rate, 
Re v (%) R% 

300 6 42,500 
750 I0 37,600 

1500 1 33,300 

flow conditions in terms of  the Reynolds number, ReF = 4F/I~, where F is the volumetric liquid 
flowrate per unit perimeter. Though data were collected at even higher liquid rates in part  I, these 
were not simulated because of  the possibility of  turbulent flow. 

In figure 5, the computed interfacial shapes for each of  the cases are compared to the 
experimental film thickness values. Computat ions were carried out for a series of  interfacial shear 
ratios, z,v/z*. Small sudden changes in the slope of  the computed profiles can be observed at 
the axial position near the top of  the porous section. Whether this is a computational artifact due 
to the discontinuity there or whether it is physically real is not yet known. Solutions with a finer 
grid show similar results. A value of this shear stress ratio of  0.4, in general, gives agreement well 
within the + 0.05 mm error bound for the measured thicknesses. The result meets the criteria of  
Zav/z* being < 1.0. Furthermore,  the very large wave structure measured in the feed zone implies 
the existence of large accelerations due to flow over these waves. 

This study involves an analysis of  the flow field in the liquid filml Before the model can be fully 
predictive for flooding, a study of  accelerations in the gas phase flowing over a wavy surface will 
be needed. Then, it will be possible to compute Za~/Z*. However, even before this is done, it seems 
possible to arrive at a qualitative judgment that the feed-splitting mechanism proposed here for 
flooding is reasonable. 

The nature of  the flow field in the liquid film can be discerned from the streamline map in figure 
6 and the velocity profiles shown in figure 7, both for ReF = 750. Splitting of  the flow in the film 
seems to occur with most of  the liquid entering the porous section flowing downward and then 
the reversal of  the flow first takes place near the interface as a result of  the interfacial shear. 
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Figure 8. Effect of increasing the liquid upflow rate, Re F = 750. Upflow: (a) 21%: (b) 55%; (c) 75%. 

Figure 8 shows the effect of  increasing the upflow rate past the flooding point for ReF = 750. 
For  each upflow rate, the film model does a reasonable job of  describing the feed region using the 
same value of  0.4 for ray~r* as at flooding. Therefore, the model can be used over a wider range 
of  conditions than just flooding. The full implications of why ray/Z* = 0.4 works best for all the 
runs are not yet known. 

SUM MA RY  

The numerical studies presented here suggest that the condition of flooding takes place within 
the liquid film at the feed location. Flooding occurs when the interracial shear is sufficiently high 
to cause a reversal in the direction of the velocity in the outer portion of the film. Application of 
this model shows good agreement with the axial profile of the mean film thickness as measured 
in the feed region. The shear stress is less than that computed from the measured pressure gradient 
assuming parallel nonaccelerating flows. The difference is attributed to the very large accelerations 
which take place for the gas flow around these large waves. 
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A P P E N D I X  

Navier-Stokes Equations 

To obtain [5] and [6] from [4], let J = (pVV + PI  - Q. Then, V. J = B becomes 

1 O O (hcj.¢)+j¢Oh¢_~ Oh~l 

and 

s  h:l I (h.J¢.) Jr (h~J..) + J.¢ - ~  = B. 

for the ~ and r/directions, respectively, and the J components are given as 

J~¢ = pu 2 + P - 2#E¢~, 

J~, = J~, = puv - 2#c¢, 

and 

[A1] 

[A2] 

[A3a] 

[A3b] 

1 (av uah.'] 
E , , = ~  _~q + ~ --~- ]. [A4c] 

The body force, B, in the (x, y) coordinate system is given by 

B = -pgj ,  [AS] 

where j is the unit vector in the y direction. In the (~, q) domain, this corresponds to 

Vq lOx . h-~l Oy ) Pgh~ c~ycg~ [A6] B~ = - p g j .  e, = - p g j .  l T Z ~ '  + J =" 

and 

Jnn = p v  2 + P - 2#E... [A3c] 

Substituting [25] into [24] and multiplying through by heh. results in [5] and [6] in terms of the rates 
of strains, Eij. The values of Eij are defined as 

1 (Ou v Oh¢'~ 

l F 1 Ov 1 du 1 (utah, cOh,'~l [A4b] 
" " = 2 L ~ - ~  "~ h, Otl heh,\  --~q+v O~.]_] 
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and 
( 10x 10y ) pgOy [A7] 

B,  = - p g j "  e: = - pgj. \h---.~ i + ~ j - h,  0##' 

where e~ and ez are the unit vectors in the (~, q) domain; for further details, see Lacy (1992). 
Substituting [A4], [A6] and [A7] into [5] and [6] yields 

0 2 + d_ Oh¢ Oh. 
(h.pu ) Or# [h:puv) + p u v ~  - pv2 O--f 

Oy h OP 0 (#h,10u ~ 0 (ph¢Ou~ LF#h.(Ou 

+ ~ Lh¢ 0¢ -~ h, Oq hch, \ Oq + v 0~ ,]] 

and 

0 (h~puv) + O_ Oh. 0h¢ 
0-~ 01/(h¢Pv2) + puv ~ -- pu 2 O--q 

=-h,  pg~q-h OP 0 (txh, Ov~+ d__(#h, Ov~ 
o,t + -~ \ h~ o¢) o,7 t, h. 0~ ) 

Oh, 1 [!Ov l 0u 1 [" 0h¢ 
+"-~-Lh,  0g -~ h.O. h,h, t U ~  

for ~ and q, respectively. 

o I-.h,(ov 2uOh,]] 
+~Lh. \&r# + ~-o$)J 

u0h¢ v 0h.~] 
h~ 0~ h~ ~ ) J  

[A8] 

Oh""l] [A9] 

Boundary Conditions for Mapping at ~ = ! 

To compute the value of 6" l(r/i ) requires the orthogonality relationship of 

~x ~x Oy Oy 
0-~ Oq + 0-~ 0---~I = O, [ A 1 O] 

which is equivalent to [14]. Rewriting this equation and [2] for the nth iteration yields 

 0x" 1 
0Z=--/0~ 0~_1 Ox__"_"=_aOX____"_"03 03 [All] 

L. Oq .) 

and 
Px"V Py"V 

(h~): = \ - ~ ]  + \ ~ - ) .  [A12] 

Though the values of x and y are to be calculated for the n th iteration, the value of a" is unknown, 
but can be approximated by using a "-k. By substituting [All] into [AI2] with a"=  a" J, an 
equation for Ox"/a~ can be obtained as 

dx" X/ (h~)2 0~- = 1 + (a"- ') 2 [A13] 

and 
dy" _ a n-I L (h~)2 
t3--f = N/ 1 + (a"- ,)2" [A 14] 
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This completes the specification of the boundary conditions needed to solve [11] and [12] for each 
iteration to change he(l, 7). 

Algorithm for  6" -  I(tb) 

The choice of 6"- l(r/i) used in [15] is given by 

a 
6" - ' (q , )=  . , { A P " - ' ( 1 . q , ) - b [ A P " - ' ( 1 . q , + , ) - A P " - ' ( 1  q,)]}. [AI5] 

A P M a  x 

where AP is the difference between the specified pressure and Po calculated from [10], AP~]~ 
signifies the maximum computed pressure difference along the interface during the ( n -  1)th 
iteration, a = 2 x 10 -6 m for AP~]x ~ > 5 N/m 3 and 3 x 10 -7 m for A P ~ ,  1 < 5 N/m 3, b = 4 and the 
subscript i + 1 refers to the neighboring numerical grid node located vertically immediately above 
node i. The values of a and b were chosen by a trial-and-error process to obtain a quick, but stable 
solution. The larger value of a was used to obtain the approximate solution, and the smaller was 
used to obtain the final solution. 


